close

製品情報

おすすめ情報

  • よくあるご質問
  • お問い合わせ
  • 情報機器用語集

close

導入事例

新着導入事例

close

サポート

よくあるご質問、OS対応状況、お問い合わせ窓口を掲載しています。

かんたんサポートナビ

かんたんサポートナビでは製品カテゴリからサポート情報を素早く、簡単にお探しいただけます。

close

ダウンロード

各製品のドライバーやアップデートプログラム、関連ユーティリティー、ソフトウェアなどのダウンロードができます。

製品カテゴリからダウンロード情報を素早く、簡単にお探しいただけます。

  • プリンタードライバー
  • 関連ユーティリティー
  • ソフトウェア
  • カタログ(PDF形式)
  • ユーザーズガイド/取扱説明書(PDF形式)
  • お問い合わせ
  • OS対応状況

マーケティングの成果を高めるデータ分析の基本

公開:2021年8月05日(木)| データ分析

マーケティングの成果を高めるデータ分析の基本

マーケティング施策を経験や勘のみに頼っていると、成功確率を高めることは難しいでしょう。施策が失敗した際にも原因が特定できず、同じ失敗を繰り返す可能性があります。そこで、マーケティング施策にデータ分析を取り入れると、顧客層の理解が深まり、ビジネスの課題を明確化できます。その結果、マーケティングの成功率が高まり、成果を継続的に上げることができるのです。今回は、マーケティングの成果を高めるデータ分析の基本を紹介します。

データ分析の重要性

現代のマーケティングにおいて、データ分析は重要度を増しています。ITの飛躍的な進化や、情報に触れるチャネルの増加により顧客の購買行動が多様化したことで、従来のようなマスマーケティングによる一元的な情報提供では消費者を振り向かせることが難しくなったからです。いかに個別のニーズを発見するか、それに対してどのようなアプローチをしていくのかが、現代のマーケティング施策には欠かせない要素となっています。個別ニーズに対応するためには、経験や勘だけでは限界があります。データをもとに丁寧にニーズをくみとり、マーケティング施策に反映することが重要です。

データを活用するための3つの力

データ分析とは、数字、記号、テキストなどの各種データから、目的達成に貢献する有益な見解(課題解決のための方法)を見出すことです。分析することそのものに意味があるわけではなく、分析から得られた見解をマーケティング施策に反映して、初めて価値ある活動になるといえます。そのため、分析方法を覚えることは有益ですが、分析そのものが最終目的とならないように注意しなければいけません。

データをマーケティングに活用するためのステップをまとめると、下記のようになります。

データを整理・統合する

分析をする前の重要なステップとして、必要なデータとそうでないデータを整理し、目的にあわせてひとつのデータベースに統合する作業があります。的確な分析結果を得るためには、正確なデータの準備と、データ間の紐づけが必要です。軽視されがちなステップですが、決しておろそかにしてはいけない作業です。データの揃え方やデータ統合、データクレンジングに関しては他の記事で解説しております。

データを分析する

データから新たな価値を見出す作業で、ポイントは、目的を明確にすることです。分析手法は多岐にわたり、目的によって最適な手法は異なります。後半に基本的な分析手法を紹介していますので、ご参照ください。

データを活用する

分析結果をマーケティング施策に反映させます。どれだけ分析に時間をかけても、その結果を施策に反映できなければ意味がありません。例えば、ある観光地の店舗の売上状況を分析するとしましょう。何時ごろに観光客が多いか、親子連れが多いのか、男女二人連れが多いのかなどを分析し、立ち止まって観覧するイベントより、”歩きながら参加するイベントのほうが店舗の売上増に貢献する”ことを発見したとします。ここまでに用いたのは「データを分析する力」です。発見をもとに、例えば灯篭(とうろう)流しのような「歩き型イベント」を導入して成果をあげたとき、発揮されたのが「データを活用する力」といえます。

データ分析はなぜマーケティングに役立つのか

データ分析を行うと、どのようなことが実現できるでしょうか。

データ分析はなぜマーケティングに役立つのか

現状を正確に把握できる

マーケティング施策の精度を高めるためには、現状を正確に把握することが必要です。データを利用することで、市場動向や顧客行動を正確に把握でき、マーケティング施策の成功率を上げられます。

ターゲットとなる顧客を特定できる

新規顧客獲得においても、既存顧客のロイヤルカスタマー化においても、マーケティング対象となる顧客を特定することは重要です。データを細かく分析していくことで、「ぼんやりとはわかっているけど、定義できていない」「単純に売上だけを見ている」といった状態を防ぎ、顧客像を明確にすることができます。

課題解決力が向上する

適切なセグメント軸はどれか、顧客にアプローチするメディアは何が最適かなど、マーケティングは課題解決の積み重ねといえます。しかし、課題の解決を経験や勘に頼ると継続的な成功は期待できません。データ分析結果にもとづいて課題にアプローチすることで、マーケティング施策の質が向上します。データ分析をいかにマーケティングに活用するかについては別記事で紹介しています。

データ分析の例

では、どのようなデータ分析がマーケティングに利用できるのか、例を挙げて見ていきます。

顧客分析

マーケティングでもっとも大切なことは、自社の商品・サービスにふさわしいターゲットを発見し、そのニーズを見極めて適切なアプローチをしていくことです。
顧客分析では、自社商品やサービスを利用した顧客やそのニーズを把握し、ターゲットとなる顧客層を特定していきます。
例えば「自社の顧客はどの店舗を利用していてどんな商品やサービスを利用しているのか? どんな特性があるのか?」、「どのような顧客が優良顧客なのか?」、「離反(購入しなかった、他社商品にスイッチした)の原因は何か?」などが挙げられます。顧客分析をおろそかにしてしまうと、購入確度の低い顧客に絞り込みをしてしまうといったことや、どのようなメディアを利用するかといったことを勘や経験、過去実績からのみ判断してしまうことにつながります。

商圏分析

商圏分析は、顧客住所データや国勢調査データなどの統計データなどを活用して、自社店舗の商圏範囲やその市場規模、地域特性を可視化するものです。自社店舗や競合店舗の住所データを地図上にマッピングすることで、自社と競合店との位置関係を把握することも含まれます。商圏分析を通じて、自社店舗がアプローチすべき地理的な範囲や、地域特性に応じたアプローチ方法を発見することが可能です。
分析項目には、「自社商品のターゲットはどこにいるのか?」、「自社店舗の実勢商圏はどれぐらいか?」、「競合店の位置がどれくらい自社店舗の商圏に影響を与えているのか?」などがあります。

アンケート分析

アンケート分析は、顧客情報や顧客の意見などの傾向を掴むことによって、課題解決やマーケティング戦略立案につなげる重要なデータ分析です。比較的低コストで実施できる手法でありながら、活用範囲が広い分析手法といえます。
分析項目には「なぜ自社商品やサービスを購入しているのか?」、「どこで商品を知ったか」、「どれくらい満足しているのか?」などがあります。

データ分析の基本手法8選

データ分析にはさまざまな手法がありますが、ここでは汎用性に優れた基本の8手法を紹介します。分析手法に限らず、フレームワーク全般にいえることですが、一度に多くの手法を覚えることに注力するのではなく、自社の目的に合ったものを選んでそれをマスターすることが大切です。

クロス集計

アンケート調査の回答結果について、回答者の年代、性別などの属性をクロスさせて集計する手法です。例えば、顧客満足度について回答が得られていれば、クロス集計を利用することで、全体的な傾向だけでなく顧客の属性別の結果を把握することが可能です。種々の分析軸を試してみることで、新たな発見も得やすいでしょう。項目ごとの相関関係や比較、属性ごとの大まかな動向を把握できる分析手法の基本といえます。

アソシエーション分析

商品・サービスの関連性を分析する手法です。一見関連のない複数の事象のなかにも意外な関連要因が隠されていることは多いものです。例えば、「紙おむつとビールが同時に購入される確率がなぜか多い」や「Webサイトで会員登録するユーザーは登録前になぜかウィキペディア(Wikipedia)を見ている可能性が高い」などです。
アソシエーション分析をする際に、やみくもに事象を取り上げて関連性を分析するのは時間の浪費になります。事前の仮説構築力が重要となる分析といえるでしょう。アソシエーション分析を通じて発見した関連要素は、マーケティング戦略の立案に活用できます。

バスケット分析

アソシエーション分析から発生した分析手法です。目的は同一ですが、バスケット分析は対象が購入商品に限られます。バスケットとは「買い物かご」のことであり、ユーザーが買い物かごに何をいれているかを分析します。A商品を購入した人はB商品を購入する確率が高いという結果が得られれば、それをもとにクロスセル(関連販売)を促すことができます。市場が飽和して新規客の獲得コストがますます高まるなか、客単価を向上させるクロスセルを促進させるための分析として重宝するでしょう。

決定木分析

ある事象に対して「もしも〇〇だったら、〇〇という結果になるのではないか」という仮説を立てて未来を予測する手法です。自社商品・サービスの購入見込みが高い人はだれか、ロイヤルティの高い顧客にはどのような特徴があるか、という顧客分析に活用できます。また、〇〇というキャッチコピーにしたら、既存客が離反するかもしれないといったリスクのあぶりだしにも活用できます。

因子分析

因子分析とは、大量のデータに潜む共通因子を探り出すための手法です。顧客を理解するためによく利用されます。例えば、ブランディングをしていきたいとします。その際に、どのような因子がブランド形成に影響を与えているかを把握することが重要になります。因子分析を行うと、サービスの向上や製品の信頼性向上などのさまざまな取り組みのなかで、共通してブランディングに貢献している因子を見つけ出すことが可能です。明らかになった因子を生かせるような施策を考えると、より効率的に、より効果的にブランディングを行えます。

ABC分析

重要度に応じてA、B、Cにランク分けする分析手法です。別名で「重点分析」ともいわれます。例えば、いくつかの商品について、販売額や客数別にランク分けして重点販売商品を決定するといった使い方が可能です。売れ筋商品と死に筋商品のあぶり出しや、在庫管理などにも活用できます。

クラスター分析

異質のデータが混在するデータから、類似の特徴でグループ分け(クラスター)する分析です。グループ分けの軸はさまざまありますが、性別や年代などでグループ分けする階層別クラスターと、甘さが控えめだから購入した、ブランドにひかれて購入したといった非階層クラスターがあります。どちらのクラスター分析を行うかは、目的によって異なるため、使い分けることが必要です。クラスター分析は、「顧客層の特性」や「商圏の特性」、「ブランドのポジショニング」などの分析に活用でき、汎用性の広い分析手法といえます。

ロジスティック回帰分析

ロジスティック回帰分析から得られる結論は非常にシンプルで、ある質問に対してイエスなのかノーなのかを分析していく方法です。例えば、アソシエーション分析のように「商品Aと一緒に購入されてるものは何か?」というように複数の分析結果を求めるのではなく、「商品Aを買ったか買わなかったか」という2択で考えます。「このキャンペーンと実施すべきか」、「DMを配布すべきか」などの決定に活用できます。

データ分析で最適なマーケティングアクション

データを利用しないということは経験や勘のみに頼ることとなり、マーケティングがギャンブル化することになります。データ分析の習慣が組織に根付くことで、施策の成功率を高めていくことができます。取り組み当初は思うような成果が出せなかったとしても、仮説と検証を繰り返しながらデータが蓄積されていくことで、より精度の高い施策を行うことができるでしょう。

現在はデータが入手しやすく、分析するためのツールや外部パートナーも充実しており、データ分析がしやすい時代となっています。 データ分析は専門的な知識・スキルが必要なケースも多く、自社にデータ分析者を配置するのが難しい場合には外部のデータアナリストに依頼するのもひとつの方法です。外部に委任することでデータ分析の定常的なアウトプットを維持できます。専門家のノウハウを吸収することもできるでしょう。

デジタルマーケティングでお悩みの方は、お気軽にご相談ください